Galactic rotation curves as solutions of Lane Emden equation of dark matter.
 Nandita Lahkar ${ }^{\text {1,* }}$

1 Girijananda Chowdhury Institute of Management \& Technology, Guwahati

* Presenting author (nanditalahkar1@gmail.com)

Polytropic dark matter halo is a new approach to address the dark matter problem. In this work the Lane Ã¢â, $\neg \hat{a} € œ$ Emden equation for configuration of dark matter and gas is constructed and solved. Finite solutions are obtained for gas polytropic indices, n= 0 Ãcâ, $\neg a ̂ € œ$ 5 and dark matter polytropic indices, $m=1 \tilde{A} c \hat{c}, \neg a ̂ \npreceq \propto 5$. The central value of the ratio of dark matter to gas density, $\tilde{\mathrm{A}} \check{Z} \hat{\mathrm{~A}}^{2}=\tilde{\mathrm{A}} \bullet \hat{\mathrm{A}} \bullet \ldots\{\mathrm{dm}(0)\} / \tilde{\mathrm{A}} \bullet \hat{\mathrm{A}} \bullet \ldots\{\mathrm{g}(0)\}$ is taken as $0.1,1$ and the cosmological ratio ~ 5.46.
Both compact and extended configurations are obtained through density profiles deduced from the solutions of the Lane Ã¢â, \neg â€œEmden equation. Rising and flat rotation curves are found to arise naturally from the dark mass profiles of the solutions.
Whereas lower dark matter index $(\mathrm{m}=1,2)$ gives rapidly rising and high amplitude rotation curves, flatness of rotation curves becomes prominent for $m=3 \tilde{A} \not \subset a ̂, \neg a ̂ \npreceq œ$. The galaxy types represented by the rotation curves deduced from dark matter polytropic indices are inferred. Impact of gas on redistribution of dark matter is indicated.

